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We can calculate the nuclear structure of all the elements in the periodic table. The 
software allows obtaining the Fermi level without the continuum hypothesis, considering 
only discretized eigenvalues. In addition, the wave function of all the protons and neutrons 
in a nucleus can be represented.   

 
QNuclei SOFTWARE. The software has three different windows.In the initial window, 1D 
(one-dimensional) eigenvalues and eigenfunctions can be calculated. In addition, the model 
parameters can be changed in the initial window. The other windows are the 
Eigenfunctions (3D) window and the Eigenvalues (3D) window. Every time model 
parameters or input data are changed, the 1D eigenvalues in the initial window must be 
recalculated. 
 
 

 
QNuclei SOFTWARE. Initial software window. Nuclei software. 
 
 



 
QNuclei SOFTWARE · nuclear isotopes. Initial window for Level (3D) calculation. 
 
 

 
QNuclei SOFTWARE · nuclear isotopes. Initial window for Wave Function calculation. 
 

The algorithm for counting nucleons, which the program has, takes into account the 
degeneracy of quantum levels and allows us to see how the symmetrical energy acts in the 
nuclei. QNuclei is ab initio (from first principles) software. That is, you only have to enter the 
values of N (number of neutrons) and Z (number of protons) to perform the calculations. 
The program allows to see how the symmetrical energy acts in the nuclei. 

The procedure that we are going to carry out will be the following. 
 
1) Find a stable nucleus and get N and Z. 
2) Adjust the value of c_sym (symmetry energy) with the following condition, Fermi level 
(neutrons)= Fermi level (protons). 
3) We study the nucleus. 

 

 

 

 



 
Characteristics 
 
 

1. Easy to use. A few clicks are enough to obtain results (see DEMO version). 
2. You can calculate the nuclear structure of all the elements in the periodic table. 
3. QNuclei is an ab initio (from first principles) software. You only have to enter the 

values of N (number of neutrons) and Z (number of protons) to perform the 
calculations. 

4. The wave function of all the protons and neutrons in a nucleus can be represented. 
5. Export image files in GIF, JPG and NPG format. 
6. You can calculate the Fermi level of any nucleus in the periodic table. 

 

Advantages 
 
 

1. It tells us the energy from which there are no nucleons at 0K temperature. 
2. It allows to compare the energy of the nucleons and their rest mass to know the 

relativistic effects in the nuclei. 
3. It allows obtaining the Fermi level without the continuum hypothesis, considering 

only discretized eigenvalues. 
4. The algorithm for counting nucleons, which the program has, takes into account the 

degeneracy of quantum levels. 
5. It allows to see how the symmetry energy acts in the nuclei. The symmetry energy 

cancels the electrostatic repulsion of the protons. 
6. It allows studying hypothetical nuclei that are not found in nature due to their great 

instability, for example, nuclei with Z>N. 
7. You can modify the thickness of the lines, the font sizes, the background colors,... 
8. It allows knowing the Fermi temperature of a nucleus, from which the thermal 

effects are comparable to the quantum ones. 
9. It allows scale changes in the energy axis of the nucleons. 

 
 

Applications 
 
 

1. By not using the continuum hypothesis, we can obtain the individualized wave 
function of each of the nucleons. 

2. It allows to estimate the symmetrical energy in the nuclei. 
3. It allows evaluating the stability of a nucleus. 

 



4. The algorithm allows to calculate the exact energy of the Fermi level, since it does 
not make use of the continuum hypothesis. 

5. Relativistic effects on nucleons can be evaluated. 
6. The number of holes for protons and neutrons in the last Fermi level can be 

obtained. 

 

Input Data  
 

Nuclei software is an ab initio program (since first principles) which simulates atomic nuclei. 
When starting the Nuclei software, we find the following window of the Program. 

 

Initial Window 

 
QNuclei SOFTWARE. Initial software window. Nuclei software. 
 
 

This window corresponds to the Fermi Gas model for atomic nuclei. 

 

N and Z numbers 
In the upper left part of the window, we have the following controls. 

 

 
QNuclei SOFTWARE. Input data for nuclei. 
 
 



Here we write the number of protons (Z) and the number of neutrons (N) from the nucleus. 
Let us remember that A=Z+N where A is the number of nucleons. The number of nucleons 
(A) is the nearest integer to its atomic weight. The number of neutrons is N=A-Z. To get N 
and Z we do the following. 

 

After typing Z and N, you have to click on the "OK" button. Then, the program incorporates 
the new values for N and Z. 

 

Symmetry energy 

 
 
It is an important correction to the V (potential) value. The correction is known as symmetry 
energy, which arises from unequal numbers of neutrons and protons in the nucleus. A 
proton and a neutron can interact in more ways than two neutrons or two protons because 
in the latter cases, many of the interactions are forbidden by the Pauli exclusion principle. 
The effective force between a neutron and a proton is thus stronger than the others. 
Therefore, if a nucleus has more neutrons than protons, V is stronger for a proton, and 
weaker for a neutron, since its interaction is mostly with other neutrons. The shift in V, due 
to the symmetry energy (ΔV) , has been determined, 

ΔV= ± c_sym·(N-Z)/A (MeV) 

where (+) for protons and (-) for neutrons. c_sym is the symmetry energy coefficient. Its 
default value in QNuclei is 20 MeV. 
 
 

 
QNuclei SOFTWARE · symmetry energy. If N=Z, symmetry energy vanishes. If N>Z, 
symmetry potential is attractive for protons and repulsive for neutrons. 
 
 



 
QNuclei SOFTWARE · symmetry energy. If N=Z, symmetry energy vanishes. If N>Z, 
symmetry potential is attractive for neutrons and repulsive for protons. 
 

 
QNuclei SOFTWARE · symmetry energy. Segre graph. Stable nuclei in nature. 
 
 
 
 
 
 
 
 
 
 
 



Several c_sym values (symmetry energy) for stable nuclei. 
 
 
Z N A c_sym (MeV)    
8    10 18 20    
16   20 36 30    
20 24   44   37    
32      40      72      43    
40 52 92 49    
56 80 136 45    
64 93 157 47    
80 120 200 50    
88 132 220 54    
103            159           262          56    
 
 
 

Probability density 

 
QNuclei SOFTWARE. Probability density option. 
 
 

If [Yes] is chosen, the program will show the probability density |Ψ|² instead of the wave 
function Ψ. 

 

Unperturbed eigenvalues 
In the upper left part of the window, we have the following controls. 

 

 
QNuclei SOFTWARE. Unperturbed eigenvalues option. 
 
 

If [Yes] is chosen, the program will also show the unperturbed eigenvalues. Unperturbed 
eigenvalues are calculation parameters in Perturbation Theory. 

 



Unperturbed eigenfunctions 

 
QNuclei SOFTWARE. Unperturbed eigenfunctions option. 
 
 

If [Yes] is chosen, the program will also show the unperturbed eigenfunctions. Unperturbed 
eigenfunctions are calculation parameters in Perturbation Theory. 

 
 
 

Electrostatic repulsion 

 
QNuclei SOFTWARE. Electrostatic repulsion option. 
 
 

If [Yes] is chosen, the program will show the probability density |Ψ|² or the wave function Ψ 
considering electrostatic repulsion between protons. 

 

 

QNuclei SOFTWARE · electrostatic repulsion. Without electrostatic repulsion, the 
potential is identical for neutrons and protons. With electrostatic repulsion, the potential is 
repulsive for protons. 
 
 
In nature, N>Z for stable nuclei. That is, the electrostatic potential and the potential due to 
symmetry energy cancel. When this happens, the protons and neutrons fill up to the same 
energy. In this way, the Fermi level for protons and neutrons coincide.  
 



Buttons on the right side 
On the right side of the window, we have the following controls. 

 

 
QNuclei SOFTWARE. Buttons on the right side of the window. 
 
 

Exit Exit the program. 

Clear Clear the window. 

Play or Calculate Compute to get results. 

Levels (3D) This button is initially disabled. The button will be enabled after doing a 
calculation (Calculate button). A new program window will be displayed: Levels (3D) 
window. 

Function (3D) This button is initially disabled. The button will be enabled after doing a 
calculation (Calculate button). A new program window will be displayed: Function (3D) 
window. 

 
The procedure that we are going to carry out will be the following. 
 
1) Find a stable nucleus and get N and Z. 
2) Adjust the value of c_sym (symmetry energy) with the following condition, Fermi level 
(neutrons)= Fermi level (protons). 
3) We study the nucleus. 
 
 



Eigenvalues (3D) Window 

 
QNuclei SOFTWARE · nuclear fission. Initial window for eigenvalues (3D) calculation. 
 
 

We can calculate nucleon energies considering 3D wave functions. Firstly, it is necessary 
to calculate (or recalculate) the 1D wave functions in the Main window of QNuclei. 

For example, we obtain the next image. 

 

 
QNuclei SOFTWARE · nuclear plant. 3D eigenvalues for a Gadolinium nucleus with 
electrostatic repulsion and with symmetry energy. The symmetry energy coefficient that we 
have used is 47 MeV (Such a value equals both Fermi levels). 
 
We now see that the Fermi level for protons and neutrons are practically identical. Now we 
look at the Fermi level for neutrons (see next image). 

 

 
QNuclei SOFTWARE · nuclear plant. 3D eigenvalues for a Gadolinium nucleus with 
electrostatic repulsion and with symmetry energy. The symmetry energy coefficient that we 
have used is 47 MeV (Such a value equals both Fermi levels). Neutrons (left column). The 
wave function at Fermi level is  (1,1,5). Violet color. The software counts the possible states 



(nucleons) that are below an energy value 'E(cut)'. Accumulated neutrons= 96 and N=93. 
So that, we have 3 holes in the last eigenstate (3 unoccupied states). 

 
Now we look at the Fermi level of the protons (see next image). 

 

 
QNuclei SOFTWARE · nuclear plant. 3D eigenvalues for a Gadolinium nucleus with 
electrostatic repulsion and with symmetry energy. The symmetry energy coefficient that we 
have used is 47 MeV (Such a value equals both Fermi levels). Protons (center column). 
The wave function at Fermi level is  (3,3,2). Violet color. The software counts the possible 
states (nucleons) that are below an energy value 'E(cut)'. Accumulated protons= 70 and 
Z=64. So that, we have 6 holes in the last eigenstate (6 unoccupied states). 
 
 

 
QNuclei SOFTWARE · nuclear plant. In the upper part of the figure (gray) we see that we 
are studying a nucleus with 120 neutrons (N=120). The cutoff energy has been calculated 
automatically (orange) and there are 132 states up to the Fermi level. So that, there are 12 
holes (132-120) in the last level (Fermi level). On the right side (black), the levels of the 
type (X,1,1) are indicated, which are those of minimum energy with a value of n=X on one 
of their axes. The quantum degeneracy of the level is also indicated (d). 
 



Energy cut-off for neutrons 
In the upper left part of the window, we have the following controls. 

 

 
QNuclei SOFTWARE · nuclear fission. Input data for QNuclei. 
 

You can write the energy cut-off value by hand. Otherwise, the energy cut-off value will be 
automatically obtained by the software. 

 

Energy cut-off value for protons 

 
QNuclei SOFTWARE · nuclear fusion. Electrostatic repulsion option. 
 
 

You can write the energy cut-off value by hand. Otherwise, the energy cut-off value will be 
automatically obtained by the software. 

 

 

 

 

 

 

 

 

 



Buttons on the right side 
On the right side of the window, we have the following controls. 

 
 
 
 
 

 
QNuclei SOFTWARE · nuclear fusion. Buttons on the right side of the window. 
 
 

Exit Exit the program. 

Clean Clean the window. 

Play or Calculate Compute to get results. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Eigenfunctions Window 

 
QNuclei SOFTWARE · nuclear isotopes. Initial window for eigenfunctions calculation. 
 
 

This window corresponds to the Fermi Gas model for atomic nuclei. The 3D wave functions 
will be calculated through the Monte Carlo method of calculation and using the Metropolis 
algorithm. 

 

n_x and n_y numbers 
In the upper left part of the window, we have the following controls. 

 

 
QNuclei SOFTWARE · nuclear isotopes. Input data for nuclei. 
 
 

Here we write the n_x and n_y values. The 3D eigenfunction will be represented in a 2D 
plane. In our case, the probability in the z-axis will be taken to be equal to 1. 

 

 

 

 

 

 

 



Neutron or proton 

 
 
We can choose if the particle is a proton or a neutron. The 1D wave function will be taken 
to obtain a 3D eigenfunction through the Monte Carlo method of calculation and the 
Metropolis algorithm. 
 
 

Number of Monte Carlo points 

 
QNuclei SOFTWARE · nuclear industry. Number of Monte Carlo points in the calculation. 
 
 

The number of Monte Carlo points will be used through the Metropolis algorithm. 

 

Buttons on the right side 
On the right side of the window, we have the following controls. 

 

 
QNuclei SOFTWARE · nuclear industry. Buttons on the right side of the window. 



 
 

Exit Exit the program. 

Clear Clear the window. 

Play or Calculate Compute to get results. 

 

 

Exercises 
 

 

Exercise 1.- Obtain the Fermi level for a barium nucleus 
Radium nucleus Ra (A=220, Z=88). 
The number of protons is Z=88 and the number of neutrons is N=220-88=132. Then we 
start the program. We write the values of N and Z in the initial window of the program.. 

Start QNuclei Software >> Initial window >> button [Calculation] 

Then we obtain the 1D eigenvalues and eigenfunctions (see next image) 

 

 
QNuclei SOFTWARE · Fermi level · kinetic energy and potential energy. 1D probability 
density for a Radium nucleus. 
 
 

On the right side of the image we see that the electrical repulsion of the protons increases 
the energy of the protons. Next, in the initial window of the program we look for the options: 

Initial window >> Symmetry energy >> [No] 

Initial window >> Electrostatic repulsion >> [No] 

We calculate again the 1D eigenvalues and eigenfunctions 

Initial window >> button [Calculation] 

We obtain the next image. 

 



 
QNuclei SOFTWARE · Fermi level · nuclear kinetic energy and potential 
energy. 1D probability density for a Radium nucleus without electrostatic repulsion and 
without symmetry energy. 
 
 

We now see that the eigenvalues and wavefunctions for protons and neutrons are 
practically identical. Then in the initial window 

Initial window >> button [Eigenvalues (3D)] 

We obtain the following image in the Eigenvalues (3D) window 

 

 
QNuclei SOFTWARE · Fermi level · nuclear kinetic energy and potential energy. 1D 
eigenvalues for a Radium nucleus without electrostatic repulsion and without symmetry 
energy. 
 

In the left column we have the levels of the neutrons without symmetric energy. At the top 
left we have a mark that indicates the value of the height of the 1D barrier (near 50MeV) 
and the value of 10% of the rest mass of the neutron (at almost 100 MeV). If we include the 
symmetric energy and the energy of the nucleon reaches such a value, relativistic effects 
will start to be important. 

In the left column we have that the Fermi level of the neutrons is 34.95 MeV. This will be 
the value of the Fermi level of a  Barium nucleus. If the nucleus is stable and in equilibrium, 
the Fermi level for protons and neutrons coincide, that is, they are the same. 

FE (Fermi Energy) = 34,95 MeV 

 

Alternative method (Exercise 2).- To have the same Fermi value for neutrons and protons, 
we need to include both symmetric energy and electrostatic repulsion, which act in opposite 
directions. In such a case, we will adjust the value of the coefficient used by the model for 
the symmetric energy by trial (testing) . It is adjusted until both Fermi levels (protons and 
neutrons) coincide. Then, we calculate the difference between the Fermi energy and the 



first energy value, which is approximately equal to FE= 34.95 MeV. The method, we have 
seen in this exercise, is easier. 
 

 

Exercise 2.- Obtain the Fermi energy for a mercury nucleus 
Hg (A=200, Z=80) considering the symmetry energy and the 
electrostatic repulsion between protons. 
The number of protons is Z=80 and the number of neutrons is N=200-80=120. Then we 
start the program. We write the values of N and Z in the initial window of the program.. 

Start QNuclei Software >> Initial window >> button [Calculation] 

Then we obtain the 1D eigenvalues and eigenfunctions (see next image) 

 

 
QNuclei SOFTWARE · nuclear reactor. 1D eigenfunctions for a Mercury nucleus in the 
initial window. The symmetry energy coefficient that we have used is 20 MeV (default 
value). 
 
 

On the right side of the image we see that the electrical repulsion of the protons increases 
the energy of the protons. Next, in the initial window of the program we look for the options: 

Initial window >> button [Eigenvalues (3D)] 

We obtain the next image. 

 



 
QNuclei SOFTWARE · nuclear reactor. 3D eigenvalues for a Mercury nucleus with 
electrostatic repulsion and with symmetry energy. The symmetry energy coefficient that we 
have used is 20 MeV (default value). 
 
 

We now see that the Fermi levels for protons and neutrons are different. Therefore, WE 
CANNOT DEFINE a Fermi level. We have to go back to the initial window of the program, 
change the symmetry energy coefficient, recalculate the 1D levels, and recalculate the 
Eigenvalues (3D) again. It will have to be done, over and over again, until the Fermi levels 
of protons and neutrons match. We will define the Fermi level if, and only if, the values of 
the Fermi level for protons and neutrons are equal. 

Initial window >> Menu >> Model options >> Model parameters >> Coefficient (MeV), 
symmetry energy >> 20MeV->50MeV. That is, c_sym=50MeV. 

Initial window >> button [Calculation] 

We obtain the following image in the initial window, 

 

 
QNuclei SOFTWARE · nuclear reactor. 1D eigenfunctions for a Mercury nucleus in the 
initial window. The symmetry energy coefficient that we have used is 50 MeV. 
 
Next, in the initial window of the program we look for the options: 
Initial window >> button [Eigenvalues (3D)] 
 
We obtain the following image in the initial window, 



 

 
QNuclei SOFTWARE · nuclear reactor. 3D eigenvalues for a Mercury nucleus with 
electrostatic repulsion and with symmetry energy. The symmetry energy coefficient that we 
have used is 50 MeV (Such a value equals both Fermi levels). 
 
We have that the Fermi level of neutrons and protons is approximately equal and is worth 
about 66 MeV. In the left column, we calculate the difference between the Fermi level 
(65.69 MeV) and the first level (33.24 MeV) which will be the Fermi energy of the nucleus. 

EF= 65.69 - 33.24 MeV = 32.35 MeV 

Most nuclei have a Fermi energy of 30 and few MeV. 

 

Exercise 3.- Obtain the symmetry energy (c_sym value) for a 
Radium nucleus Ra (A=220, Z=88), which is stable. 
The number of protons is Z=88 and the number of neutrons is N=220-88=132. Then we 
start the program. We write the values of N and Z in the initial window of the program. 

We remember that the effective force between a neutron and a proton is thus stronger than 
the others. Therefore, if a nucleus has more neutrons than protons, V is stronger for a 
proton, and weaker for a neutron, since its interaction is mostly with other neutrons. The 
shift in V, due to the symmetry energy (ΔV) , has been determined, 

ΔV= ± c_sym·(N-Z)/A (MeV) 

where (+) for protons and (-) for neutrons. c_sym is the symmetry energy coefficient. Its 
default value in QNuclei is c_sym=20 MeV. 

Start QNuclei Software >> Initial window >> button [Calculation] 

Then we obtain the 1D eigenvalues and eigenfunctions (see next image) 

 



 
QNuclei SOFTWARE · nuclear unit. 1D eigenfunctions for a Radium nucleus Ra (A=220, 
Z=88). Left: neutrons. Right: protons. c_sym=20MeV. 
 
 

On the right side of the image we see that the electrical repulsion of the protons increases 
the energy of the protons. 

We have to change the symmetry energy coefficient, recalculate the 1D levels, and 
recalculate the Eigenvalues again. It will have to be done, over and over again, until the 
energy levels of protons and neutrons match (as the same manner as in exercise 2). We 
will define the Fermi level if, and only if, the values of the Fermi level for protons and 
neutrons are equal. 

Initial window >> Menu >> Model options >> Model parameters >> Coefficient (MeV), 
symmetry energy >> 20MeV->50MeV. That is, c_sym=50MeV. 

Initial window >> button [Calculation] 

We obtain the next image. 

 

 
QNuclei SOFTWARE · nuclear unit. 1D eigenfunctions for a Radium nucleus Ra (A=220, 
Z=88). Left: neutrons. Right: protoes. c_sym=50MeV. 
 

We now see that the eigenvalues for protons and neutrons are practically identical. Then in 
the initial window 

Initial window >> button [Eigenvalues (3D)] 

We obtain the following image in the Eigenvalues (3D) window 

 

 

 

 



 

 
QNuclei SOFTWARE · nuclear unit. 3D eigenvalues for a Radium nucleus (A=220, 
Z=88). Left: neutrons. Center: protons. Right: protons y neutrons. c_sym=50MeV. 
 

The Fermi level for protons and neutrons coincide, that is, they are the 
same.Then c_sym=50MeV. 

 

Exercise 4.- Obtain the wave functions at the Fermi level in a 
Gadolinium nucleus Gd (A=157, Z=64). 
The number of protons is Z=64 and the number of neutrons is N=157-64=93. Then we start 
the program. We write the values of N and Z in the initial window of the program. 

Initial window >> Menu >> Model options >> Model parameters >> Coefficient (MeV), 
symmetry energy >> 20MeV -> 47MeV. That is, c_sym=47MeV (such a c_sym value has 
been obtained as the same manner as exercise 3). Then, 

Initial window >> button [Calculation] 

Then we obtain the 1D eigenvalues and eigenfunctions (see next image) 

 

 
QNuclei SOFTWARE · nuclear plant. 1D eigenfunctions for a Gadolinium nucleus Ga 
(A=157, Z=64). Left: neutrons. Right: protons. c_sym=47MeV. 
 
 

On the right side of the image we see that the electrical repulsion of the protons increases 
the energy of the protons. Both neutron and proton levels are aligned. 

Initial window >> [Levels (3D)] 

We obtain the next image. 

 



 
QNuclei SOFTWARE · nuclear plant. 3D eigenvalues for a Gadolinium nucleus with 
electrostatic repulsion and with symmetry energy. The symmetry energy coefficient that we 
have used is 47 MeV (Such a value equals both Fermi levels). 
 
 

We now see that the Fermi level for protons and neutrons are practically identical. Now we 
look at the Fermi level for neutrons (see next image). 

 

 
QNuclei SOFTWARE · nuclear plant. 3D eigenvalues for a Gadolinium nucleus with 
electrostatic repulsion and with symmetry energy. The symmetry energy coefficient that we 
have used is 47 MeV (Such a value equals both Fermi levels). Neutrons (left column). The 
wave function at Fermi level is  (1,1,5). Violet color.  
 
 

The wave function at the Fermi level for neutrons is (1,1,5). In a 2D representation, we 
have two possibilities (1,1) y (1,5) for the neutrons. A third axis with probability equal to 1 
can be supposed in our 2D representation. (1,5) refers to n_x=1 and n_y=5 in our current 
notation. 
 

 
Now we look at the Fermi level of the protons (see next image). 

 

 
QNuclei SOFTWARE · nuclear plant. 3D eigenvalues for a Gadolinium nucleus with 
electrostatic repulsion and with symmetry energy. The symmetry energy coefficient that we 
have used is 47 MeV (Such a value equals both Fermi levels). Protons (center column). 
The wave function at Fermi level is  (3,3,2). Violet color. 

 

The wave function at the Fermi level for neutrons is (3,3,2). In a 2D representation, we 
have two possibilities (3,3) y (3,2) for the protons. A third axis with probability equal to 1 
can be supposed in our 2D representation. (3,2) refers to n_x=3 and n_y=2 in our current 
notation.  

Then in the initial window 



Initial window >> button [Function (3D)] 
Function (3D) window >> Nucleon -> neutron 

Function (3D) window >> n_x -> 1 , n_y -> 5 
Function (3D) window >> button [Calculation] 

We obtain the following image in the Function (3D) window 

 

 
QNuclei SOFTWARE · nuclear plant. 3D probability density for a Gadolinium nucleus with 
electrostatic repulsion and with symmetry energy. The symmetry energy coefficient that we 
have used is 47 MeV. Neutron eigenfunction. The wave function at Fermi level is  ( n_x=1 , 
n_y=5 ). 
 
 

 
QNuclei SOFTWARE · nuclear plant. Metropolis algorithm has been applied to obtain a 
3D probability density for a Gadolinium nucleus with electrostatic repulsion and with 
symmetry energy. The symmetry energy coefficient that we have used is 47 MeV. Neutron 
eigenfunction. The wave function at Fermi level is  (n_x=1 , n_y=5). 
 
Then in the initial window 

Initial window >> button [Function (3D)] 
Function (3D) window >> Nucleon -> proton 



Function (3D) window >> n_x -> 3 , n_y -> 2 
Function (3D) window >> button [Calculation] 

We obtain the following image in the Function (3D) window 

 

 
QNuclei SOFTWARE · nuclear plant. 3D probability density for a Gadolinium nucleus with 
electrostatic repulsion and with symmetry energy. The symmetry energy coefficient that we 
have used is 47 MeV. Proton eigenfunction. The wave function at Fermi level is  ( n_x=3 , 
n_y=2 ). 
 
 

 
QNuclei SOFTWARE · nuclear plant. Metropolis algorithm has been applied to obtain a 
3D probability density for a Gadolinium nucleus with electrostatic repulsion and with 
symmetry energy. The symmetry energy coefficient that we have used is 47 MeV. Proton 
eigenfunction. The wave function at Fermi level is  (n_x=3 , n_y=2). 
 



Then in the initial window 

Initial window >> button [Function (3D)] 
Function (3D) window >> Nucleon -> proton 

Function (3D) window >> n_x -> 3 , n_y -> 3 
Function (3D) window >> button [Calculation] 

We obtain the following image in the Function (3D) window 

 

 
QNuclei SOFTWARE · nuclear plant. 3D probability density for a Gadolinium nucleus with 
electrostatic repulsion and with symmetry energy. The symmetry energy coefficient that we 
have used is 47 MeV. Proton eigenfunction. The wave function at Fermi level is  ( n_x=3 , 
n_y=3 ). 
 
 

 
QNuclei SOFTWARE · nuclear plant. Metropolis algorithm has been applied to obtain a 
3D probability density for a Gadolinium nucleus with electrostatic repulsion and with 



symmetry energy. The symmetry energy coefficient that we have used is 47 MeV. Proton 
eigenfunction. The wave function at Fermi level is  (n_x=3 , n_y=3). 

 

Model  
 
The nucleus is made up of neutrons and protons, two particles which are 1840 times more 
massive than electrons. Number of protons (p+) in a nucleus is Z (atomic number). The 
number of nucleons (A) is the integer closest to its atomic weight. Number of neutrons 
N=A-Z. 

 
All these phenomenological investigations have provided a remarkably simple relation for 
the radial size of the nucleus as a function of its nucleon number A R = r₀ A^(1/3) = 1.2 
A^(1/3) fm. All results can be approximately explained by a charge distribution ρ given by 

 
(Equation 4) 

where the nucleon density ρ₀ is 1.65·10^(44) nucleons/m^3 = 0.165 nucleons/fm^3. 

 
(Equation 5) 

 (Equation 3) 

The energies of beta rays and gamma rays emitted from nuclei are of the order of 1 MeV. 
We calculate the electrostatic energy Ec required to insert a proton into a nucleus. This is 
approximately 

 
(Equation 6) 
 
This much coulomb energy would be released if the proton were allowed to come out of the 
nucleus, but still it does not ordinarily come out. This means that it is bound in the nucleus 
by even more energy. Since the velocity of a 10 MeV nucleon is only about 15 percent of 



the speed of light (c), this means that relativistic effects are not important in considering the 
motion of nucleons in the nucleus. 
 

Since the potential well is caused by the forces between nucleons, it seems reasonable to 
assume 

that the depth of the well should be proportional to the density of nucleons. The potential is 
therefore 

taken as, 

V= -V₀/ {1+ exp[ (r- R)/ a ]}. 

The constants are V₀=57 MeV + corrections 

R = r₀ A^(1/3) = 1.2 A^(1/3) fm 

a= 0.65 fm 

 

Symmetry energy 
The potential for a nucleus is therefore taken as, 

V= -V₀/ {1+ exp[ (r- R)/ a ]}. 

The constants are V₀=57 MeV + corrections 

R = r₀ A^(1/3) = 1.2 A^(1/3) fm 

a= 0.65 fm 

The most important correction to the value of V₀ is due to what is known as symmetry 
energy. 
In the initial window, we can include symmetry energy effects on the results. 
 

 
 
The correction is known as symmetry energy, which arises from unequal numbers of 
neutrons and protons in the nucleus. A proton and a neutron can interact in more ways 
than two neutrons or two protons because in the latter cases, many of the interactions are 
forbidden by the Pauli exclusion principle. The effective force between a neutron and a 
proton is thus stronger than the others. Therefore, if a nucleus has more neutrons than 
protons, V is stronger for a proton, and weaker for a neutron, since its interaction is mostly 
with other neutrons. The shift in V, due to the symmetry energy (ΔV), has been determined, 

ΔV= ± c_sym·(N-Z)/A (MeV) 

where (+) for protons and (-) for neutrons. c_sym is the symmetry energy coefficient. Its 
default value in QNuclei is c_sym=20 MeV. 
 
 
 
 



 
QNuclei SOFTWARE · symmetry energy. If N=Z, symmetry energy vanishes. If 
N>Z, symmetry potential is attractive for protons and repulsive for neutrons. 
 
 

 
QNuclei SOFTWARE · symmetry energy. If N=Z, symmetry energy vanishes. If 
N>Z, symmetry potential is attractive for neutrons and repulsive for protons. 
 

 
QNuclei SOFTWARE · electrostatic repulsion. Without electrostatic repulsion, the 
potential is identical for neutrons and protons. With electrostatic repulsion, the potential is 
repulsive for protons. 
 
 
In nature, N>Z for stable nuclei. That is, the electrostatic potential and the potential due to 
symmetry energy cancel. When this happens, the protons and neutrons fill up to the same 
energy. In this way, the Fermi level for protons and neutrons coincide. The procedure that 
we are going to carry out will be the following. 
 
1) Find a stable nucleus and get N and Z. 
2) Adjust the value of c_sym (symmetry energy) with the following condition, Fermi level 
(neutrons)= Fermi level (protons). 
3) We study the nucleus. 
 
 



 
QNuclei SOFTWARE · symmetry energy. Segre graph. Stable nuclei in nature. 
 
Several c_sym values (symmetry energy) for stable nuclei. 
 
 
Z N A c_sym (MeV)    
8    10 18 20    
16   20 36 30    
20 24   44   37    
32      40      72      43    
40 52 92 49    
56 80 136 45    
64 93 157 47    
80 120 200 50    
88 132 220 54    
103            159           262          56    

 
 

Electrostatic repulsion between protons 
The potential energy is defined in electrostatics as, 
 
V(r)= ( k Z e²/ r² ) { 1+ ½ [1- (r/ R)² ] }. 
 
This potential is therefore 1½ times larger at the center of the nucleus than at the edge. An 
spherically symmetric charge distribution has been considered in our model [COHEN]. 
 
 



 

QNuclei SOFTWARE · nuclear data. Electrostatic repulsion option. Initial window. 
 

 
QNuclei SOFTWARE · nuclear data. If N=Z, symmetry energy vanishes. If N>Z, 
symmetry potential is attractive for neutrons and repulsive for protons. 
 

Model symmetry 
To simplify, and without loss of generality, a cubic nucleus will be considered in this model. 
 

 
QNuclei SOFTWARE · nuclear data. A cubic nucleus. 
 

Then, we can simplify the electrostatic potential and the nuclear potential, 

V(r)= V(x)+ V(y)+ V(y)   [electrostatic potential] 

 

for the electrostatic potential and for the nuclear potential, 

V(r)= V(x)+ V(y)+ V(y)   [nuclear potential]. 
 
Inside the cube, the nuclear potential is zero V₀=0MeV. Outside the cube, the nuclear 
potential is V₀=57MeV [COHEN]. This is the Fermi Gas model. To solve the Fermi gas 
model, we need Quantum Mechanics. 
 
 



The infinite quantum well 
The infinite quantum well V(x) is 

V(x)=infinity, if x < 0 or x > L 

V(x)=0, if 0 < x < L 

So the particle is trapped between x=0 and x=L. The walls at x=0 and x=L are absolutely 
impenetrable. The particle is never outside the well and Ψ(x)=0 for x=0 or x=L. Inside the 
well, the Schrödinger equation has a simple form and we can solve it. Then, 

Ψ = A sin(kx) + B cos(kx) 

The continuity condition on Ψ at x=0 gives Ψ(0)=0, which is true only for B=0. At x=L, the 
continuity condition on Ψ gives 

A sin(kL)=0 

Thus, kL = nπ, n=1, 2, 3,... and then, 

Eₙ = ħ² k² /2m = ħ² π² n² /(2mL²) 

Here the energy is quantized, i.e., only certain values of the energy are permitted. These 
states are bound states and the corresponding wave functions are 

Ψₙ = (2/L)¹՜² sin(nπx / L). 

 

 

Infinite quantum well potential. 

 

 

The finite quantum well 
For this case, we assume the well has depth V₀ between -L/2 and L/2. 
 
V(x) = V₀, if |x| > L/2 
 
V(x)=0,  if |x| < L/2 
 
Now we look for bound-state solutions, with E<V₀. The solutions are 
 
Ψ₁(x) = A exp(k₁ x) + B exp (-k₁ x), if x < L/2 
 
Ψ₂(x) = C exp(i k₂ x) + D exp(-i k₂ x), if -L/2 < x < L/2 
 
Ψ₃(x) = F exp(k₁ x) + G exp (-k₁ x), if x > L/2 
 



where k₁ = [2m(V₀ - E) /ħ²]¹՜² and k₂ = [2mE /ħ²]¹՜². To keep the wave function finite in 
region I, when x -> infinity, we require F = 0. 
 
Applying the continuity conditions at x=-L/2 and at x=L/2, we find the following two 
relationships. 
 
k₂ tan(k₂ L /2)= k₁ 
 
-k₂ cot(k₂ L /2)= k₁ 
 
These transcendental equations cannot be solved directly. They can be solved numerically 
on a computer, or graphically. We rewrite the equations in the following form: 
 
α tan(α)=(P² - α²)¹՜² 
 
- α cot(α)=(P² - α²)¹՜² 
 
where α = k₂ L /2 and P= (mV₀ L² /2ħ²)¹՜². 
 
The right side of these equations defines a circle of radius P. The solutions are determined 
by the points where the circle intersects the tangent function, as shown in figure. Therefore, 
the number of solutions is determined by the radius P, and thus by the depth V₀ of the well. 
 

 

  Finite quantum well potential. 
 

The infinite quantum well in 3D 
 
We begin with a 3D potential in cartesian coordinates, 
 
V(x, y, z) = 0, if 0 < x < L, 0 < y < L, 0 < z < L 
  
V(x, y, z) = infinity, if L < x or x < 0, L < y or y < 0, L < z or z < 0. 
 
The particle is then confined to a cubical box of dimension L. Beyond the impenetrable 
walls of the wells, Ψ=0 as before. Inside the well, the Schrödinger equation is 
 



-(ħ² /2m)[ ð²/ðx² + ð²/ðx² + ð²/ðx² ]Ψ(x, y, z) = E Ψ(x, y, z) 
 
The usual procedure for solving partial differential equations is to try to find a separable 
solution, with Ψ(x, y, z)=X(x)·Y(y)·Z(z), where X, Y and Z are each functions for a single 
variable. We will skip the mathematical details and give only the result of the calculation. 
 
Ψ(n₁, n₂, n₃)=(2/L)³՜² sin(n₁πx /L) sin(n₂πy /L) sin(n₃πz /L) 
 
E(n₁, n₂, n₃)=(ħ²π² /2mL)(n₁²+n₂²+n₃²) 
 
where n₁, n₂ and n₃ are independent integers greater then zero and refer to x, y and z axis, 
respectively. The lowest state has quantum numbers (1, 1, 1). Its probability distribution 
would show a maximum at the center of the box. (x=y=z=L/2). 
 
 
 

 

Infinite quantum well potential. 
 
 

Quantum degenerancy 
 
The Pauli exclusion principle in quantum mechanics tells us that two nucleons cannot have 
the same quantum numbers. For example, two protons can occupy the (1,1,1) state 
because they have different spins, +1/2 and -1/2. In such a case, the system is 
degenerated in energy. The energy of both +1/2 and -1/2 protons is the same. 
 
The first excited state has three possible sets of quantum numbers, (2, 1, 1), (1, 2, 1) and 
(1, 1, 2). In addition, we have two different possibilities for each quantum state due to the 
nucleon spin. It is a quantum degenerated state. The degenerancy is equal to 6, i.e., d=6. 
 
Quantum State (example) Degenerancy (d) 
(1,1,1) 2 
(2,1,1) 6 
(1,2,3) 12 
 
The (3,3,3) quantum state has the same energy than the (5,1,1) eigenstate, i.e., 
3²+3²+3²=5²+1²+1². In such a case, the quantum degenerancy is d=2+6=8. 
 

The nucleons occupy the possible states from the lowest energy to the last. The difference 
in energy between the last and the first state is the Fermi energy. We are zero temperature. 

In the Level (3D) window 



 
 

 
QNuclei SOFTWARE · Fermi gas. 3D eigenvalues for a Gadolinium nucleus with 
electrostatic repulsion and with symmetry energy.  N=93. The software counts the possible 
states (nucleons) that are below an energy value 'E(cut)'. Accumulated neutrons= 96 and 
N=93. So that, we have 3 holes in the last eigenstate (3 unoccupied states). 
 
Now we look at the Fermi level of the protons (see next image). 

 

 
QNuclei SOFTWARE · Fermi gas. 3D eigenvalues for a Gadolinium nucleus with 
electrostatic repulsion and with symmetry energy.  Z=64. The software counts the possible 
states (nucleons) that are below an energy value 'E(cut)'. Accumulated protons= 70 and 
Z=64. So that, we have 6 holes in the last eigenstate (6 unoccupied states). 

 

Calculations 
The software considers the nucleus as a finite quantum well, but in order to solve it we will 
use the infinite well solutions. In the graph below we have the well with infinite walls and the 
finite well. In order to solve the finite well, it is necessary to use the perturbation theory of 
quantum mechanics. 

 
The pink part of the potential can be treated by perturbation theory. 
  
Nondegenerate time-independent perturbation theory: 
 
Suppose we have solved the time-independent Schrödinger equation for some potential. 
 
H₀ Ψₙ⁽⁰⁾ = Eₙ Ψₙ⁽⁰⁾ 
 
Obtaining a complete set of othonormal eigenfunctions, { | Ψₙ⁽⁰⁾> } and the corresponding 
eigenvalues { Eₙ⁽⁰⁾}. 
Now we perturb the potential slightly. Perturbation theory is a systematic procedure for 
obtaining approximate 



solutions to the perturbed problem by building on the exact solutions to the unperturbed 
case. 
We write the new Hamiltonian as the sum of two terms 
 
H = H₀ + λ H' 
 
and then 
 
H |Ψₙ> = Eₙ |Ψₙ> 
 
writing | Ψₙ > and Eₙ as power series in lambda. 

 


